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A numerical method of solution of nonstationary problems of flow and heat and mass exchange of a viscous
incompressible fluid in two-dimensional multiply connected regions of an arbitrary shape with curvilinear
boundaries is presented; this numerical method is based on the canonical-element method, the three-layer
scaling difference scheme, and the three-layer explicit difference scheme. A method of finding the vortex func-
tion at the curvilinear boundaries of the region is proposed. Results of solution of some two-dimensional
problems of hydrodynamics and heat exchange for different regimes of flow are presented.

A new approach to solution of partial differential equations for arbitrarily shaped regions which has been
called the canonical-element method has been proposed in [1–3]. This approach is based on approximation of the in-
itial difference equation by a balance equation for a canonically shaped element constructed on a uniform difference
grid, and it has certain advantages over the existing numerical methods (in particular, the finite-element method) used
for such problems for simplicity, universality, and exactness of solution. The finite-difference method is characterized
by the fact that searching for the solution of the differential equation is replaced by finding the solution of the corre-
sponding integral equation, i.e., the variational equation or the integral identity. A number of disadvantages are inher-
ent in the finite-element method. The algorithm of its implementation is quite complicated, has no efficient evaluation
of the error of solution results, and necessitates a large consumption of computer time and a high capacity of random-
access memory. In a number of cases, the solution of the integral equation indeed may not be a solution [4] of the
initial differential equation. The method, as a rule, is used to solve stationary problems. Passage to solution of nonsta-
tionary problems on the basis of the finite-element method leads to a sharp increase in the volume of computations,
since it is required that the global matrix of the system be formed at each time step. Furthermore, replacement of the
curvilinear boundary of the region by a broken one leads to an additional error, and discretization of the region into
finite elements can be automated only for regions of a relatively simple shape.

The differential equations describing nonstationary processes of hydrodynamics and heat and mass exchange in
the variables stream function ψ, vortex function ω, temperature T, and volume concentration C in divergent dimension-
less form appear as
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Although the canonical-element method can be implemented on arbitrary nonuniform grids, it is appropriate to
employ regularized grids to simplify the algorithm and to ensure the possibility of automated construction of nonuni-
form difference grids [2]. The grids can be regularized by placing nodal points on the grids of coordinate surfaces and
lines. For the particular case of a singly connected region such a grid is determined in Cartesian coordinates by the
equations

ym = ym−1 + hy,m−1 ,   m = 1, 2, ..., M ,   y0 = y′ ,   yM = y′′  ;

xim = xi−1,m + hx,i−1,m ,   i = 1, 2, ..., Im ,   x0m = xm
′  ,   xIm,m = xm

′′  ;

tn = tn−1 + ht,n−1 ,   n = 1, 2, ...,   htn > 0 ,   t0 = 0 .

(6)

Here y′ and xm′  are the minimum values of the coordinates respectively: y for the points of the region and x for the
points of the section of the region by the coordinate straight line ym; y′′  and x′′  are the maximum values of the coor-
dinates for the same elements of the region. The simplest form of a regularized grid is a quasiuniform grid [1] for
which hym = hy = const, hxim = hxm = const, and htn = const.

For a multiply connected region the regularized grid is constructed by subdividing it conventionally into a
family of singly connected subregions. The boundary nodal points of each subregion lie at the external or internal
boundaries of a body or are at a distance of a grid step along the coordinate straight line from the boundary nodal
point belonging to the neighboring subregion.

For an arbitrary internal nodal point of the region the derivatives of the sought function which is contained in
the initial differential equations are determined in terms of the derivatives along the normals to the boundary surfaces
of a canonical element that is constructed in the vicinity of this nodal point using the coordinate surfaces of the or-
thogonal coordinate system. For the nodal point (xim, ym) of grid (6) the canonical element is a rectangle formed by
the coordinate straight lines x = xi+0.5,m, x = xi−0.5,m, y = ym+0.5, and y = ym−0.5.

For an arbitrary difference grid the interrelationship between the derivatives ∂W ⁄ ∂x and ∂W ⁄ ∂y (W = C, T, u,
v, ψ, ω) in the orthogonal coordinates (x, y) and the derivatives ∂W ⁄ ∂x′ and ∂W ⁄ ∂y′ in the direction of the nonortho-
gonal axes x′ and y′ making the angles (x, x′) and (x, y′), respectively, with the x axis is determined by the differential
equations of [2]. For the case of a regularized grid of the form (6) for which the angle (x, x′) is equal to zero, we
reduce these equations to a single equation:
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On the regularized difference grid, the derivative ∂W ⁄ ∂x on the sides x = xi+0.5,m and x = xi−0.5,m is deter-
mined with an error of the order of hxim

2  by the symmetric difference relations

δxWi+0.5,m = 
Wi+1,m − Wim

hxim
 ,   δxWi−0.5,m = 

Wim − Wi−1,m

hx,i−1,m
 . (8)

Equation (8)-based difference expressions of the derivatives ∂W ⁄ ∂x and ∂2W ⁄ ∂2x at the nodal point (xim, ym)
have the form
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δxWim = αxδxWi+0.5,m + (1 − αx) δxWi−0.5,m ,   δxxWim = (δxWi+0.5,m − δxWi−0.5,m) ⁄ [(hxim + hx,i−1,m) ⁄ 2] , (9)

where αx = hx,i−1,m
 ⁄ (hxim + hx,i−1,m).

We find the derivative ∂W ⁄ ∂y at the point (xim, ym+0.5) of the side y = ym+0.5 of the canonical element by
combining the difference approximations of Eq. (7) which are written for the cases where the y′ axis intersects the co-
ordinate straight line y = ym+1 at the two neighboring nodal points (xi′′,m+1, ym+1) and (xi′′+1,m+1, ym+1) at the shortest
distance from the coordinate straight line x = xim. The difference expression of the derivative ∂W ⁄ ∂y at the point
(xim, ym+0.5) can be written, with an error of O(hxim

2  + hym
2 ), in the form [3]

δyWi,m+0.5 = 
(Wi′′ ,m+1 − Wim) hx,m+1

′′  + (Wi′′+1,m+1 − Wim) hx,m+1
′

hym (hx,m+1
′  + hx,m+1

′′ )
 − 

hx,m+1
′ hx,m+1

′′

2hym

 δxxWi,m , (10)

where hx,m+1′  = xim − xi′′ ,m+1 and hx,m+1′′  = xi′′+1,m+1 − xim.
The abscissas xi′′,m+1 and xi′′+1,m+1 of the nodal points (xi′′,m+1, ym+1) and (xi′′+1,m+1, ym+1) lying on the straight

line y = ym+1 at the shortest distance from the straight line x = xim are determined from the requirement of satisfaction
of the condition

 xi′′ ,m+1 − xim  +  xi′′+1,m+1 − xim  = min ( xs,m+1 − xim  +  xs+1,m+1 − xim)  ,   s = 1, 2, ..., Im+1 − 1 . (11)

If one of the points (xi′′ ,m+1, ym+1) or (xi′′+1,m+1, ym+1) lies in the plane x = xim, the formula for δyWi,m+0.5 be-
comes a symmetric difference relation analogous to the expression for δxWi+0.5,m. The difference approximation of the
derivative ∂W ⁄ ∂y at the point (xim, ym−0.5) of the side y = ym−0.5 of the canonical element is written analogously to
(10). The number of nodal points on the coordinate straight line y = ym+1 that are employed in obtaining the differ-
ence expression of the derivative ∂W ⁄ ∂y on the side of the canonical element can generally be increased to attain a
higher accuracy; however, in so doing the algorithm of solution of the problem becomes substantially more compli-
cated.

The difference equations of the derivatives ∂W ⁄ ∂y and ∂2W ⁄ ∂2y at the nodal point (xim, ym) have the form

δyWim = αyδyWi,m+0.5 + (1 − αy) δyWi,m−0.5 ,   δyyWim = 
δyWi,m+0.5 − δyWi,m−0.5

ym+0.5 − ym−0.5
 , (12)

where αy = hy,m−1
 ⁄ (hym + hy,m−1).

The equations of vortex and energy transfer are solved numerically on the basis of the three-layer (three-level)
scaling difference scheme of [5]. Two difference equations are made to correspond to the differential equation of trans-
fer, and the function sought is computed in two approximations at each time step. The difference equation for the first
approximation is two-layer and can approximate an incomplete transfer equation in which only the convective terms
and the time derivative are preserved. For the second approximation we employ a three-layer difference equation con-
structed by approximating all the terms of the initial differential equation. With account for the difference expressions
(9) and (12) for spatial derivatives we can write the approximations of the differential equations (1)–(3) in the form
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where θwim
n , θTim

n , and θCim
n  are the weight parameters. The necessary stability conditions for the solution of the differ-

ence equations (13)–(18) are found using the method of conventional definition of certain sought functions of the sys-
tem [6]. For θγim

n  = 0, γ = ω, T, and C, when Eqs. (14), (16), and (18) are two-layer [7], the time step htn
0  must

satisfy the condition
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0
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where lV = (uim
n  ⁄ hxim + vim

n  ⁄ hym)−1, lω = [2(1 ⁄ hxim
2  + 1 ⁄ hym

2 ) ⁄ Re]−1, lT = [2(1 ⁄ hxim
2  + 1 ⁄ hym

2 ) ⁄ (Re Pr)]−1,  and lC =
[2(1 ⁄ hxim

2  + 1 ⁄ hym
2 ) ⁄ (Re PrD)]

−1. If lV > lγ, owing to the parameter θγim
n  one can select a larger step htn > htn

0  in accord-
ance with the condition lV ≥ htn > lγ, γ = ω, T, and C. The parameter θγim

n  is found from the conditions

θγim
n

 = (htn
 ⁄ lγ − 1) ⁄ 2   for   htn

 ⁄ lγ > 1   and   θγim
n

 = 0   for   htn
 ⁄ lγ ≤ 1 . (20)

ensuring the stability of the numerical solution.
The equation for the stream function (4) is solved by the establishment method on each time layer with the

use of the three-layer explicit difference scheme [5]. On the grid differing from (6) in that the discrete variable tk =
tk−1 + ht,k−1, k = 1, 2, ..., htk > 0, and t0 = 0 is introduced instead of the real time tn, we write the difference approxi-
mation of Eq. (4) with an error of the order of htk + hxim

2  + hyim
2  as follows:
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where θψim
k  is the weight parameter, θψim

k  ≥ 0. Upon the arbitrary selection of the steps htk, hxim, and hym we determine
the values of the weight parameter θψim

k  in accordance with the stability conditions of Eq. (21):

θψim
k

 = (htk
 ⁄ lψ − 1) ⁄ 2   for   htk > lψ   and   θψim

k
 = 0   for   htk ≤ lψ ; (22)

here, lψ = [2(1 ⁄ hxim
2  + 1 ⁄ hym

2) ]−1. The results of the numerical experiments have shown that the consumption of com-

puter time by establishing the solution for the stream function is minimum when the value of the parameter θψim
k  is 2

to 2.5; this value corresponds to a five- to sixfold increase in the time step as compared to the maximum one for an
ordinary two-layer explicit difference scheme. The process of establishment of the solution of (21) is considered to be

completed when the condition ∑ 
i

 ∑ 
m

(ψim
k+1 − ψim

k ) ⁄ htk ≤ ∆, where ∆ is the small positive number, is satisfied. In this

case it is assumed that ψim
n+1 = ψim

k . We take ψim
k  = ψim

n  as the initial approximation corresponding to the value k = 0.

The components of the velocity vector uim
n+1 and vim

n+1 are determined from the difference equations following from re-

lations (5):

uim
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 = δyψim
n+1

 ,   vim
n+1

 = − δxψim
n+1

 . (23)
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Difference equations on whose basis one determines the values of the sought grid functions at the boundary
nodal points exert quite a substantial influence not only on the stability of a numerical solution but on its exactness
as well. If the value of the stream function at a certain boundary point P0 is ψ0, its value ψ1 at the point P1 at the
same boundary is determined in terms of the integral over the contour of the region:

ψ1 = ψ0 + ∫ 
P0

P1

(udy − vdx) . (24)

Since the components u and v of the velocity vector at the boundaries of the region are considered to be
specified, it is not difficult to define the function ψim for the boundary nodal points. A specific feature of the search
for the values of the vortex function at the boundary points is that, formally, the boundary conditions are not specified
for this region. Numerous works in which one presents different means of finding the vortex function ω at the nodal
points of an orthogonal difference grid that lie at the plane boundaries of the region are analyzed in sufficient detail
in [7]. These means cannot be employed for regions with curvilinear boundaries.

With the aim of obtaining difference expressions that determine the values of the vortex function at the nodal
points of a nonuniform grid for an arbitrarily shaped region, we propose the following method. A Cartesian coordinate
system with the origin at the boundary nodal point P0 in question is constructed. One coordinate is directed along the
internal normal n to the boundary surface at the point P0, while the other is directed along the tangent τ. In the vi-
cinity of P0, we select a certain number J of nodal points Pj with the coordinates nj, τj (j = 1, 2, ..., J) that are re-
lated to the coordinates x and y of the initial coordinate system by the relations nj = [x(Pj) − x(P0)] cos
(n, x) + [y(Pj) − y(P0)] sin (n, x) and τj = −[x(Pj) − x(P0)] sin (n, x) + [y(Pj) − y(P0)] cos (n, x). For each of the points
Pj, j = 1, 2, ..., J, the stream function ψj is expressed in terms of the values of the function ψ and its derivatives with
respect to the coordinates n, τ at the point P0 by expanding in a Taylor series in which a certain finite number of
terms is retained. If the velocity vector V at the boundaries of the region is specified, for the point P0 its projections
Vn and Vτ onto the n and τ axes and their derivatives along the tangent τ should be considered to be the known quan-
tities. This enables us, using the relations ∂ψ ⁄ ∂n = Vτ, ∂ψ ⁄ ∂τ = −Vn, ∂2ψ ⁄ ∂τ2 = −∂Vn

 ⁄ ∂τ,  and ∂2ψ ⁄ ∂n2 =
ω + ∂Vn

 ⁄ ∂τ which are analogous to (5), to express part of the derivatives (involved in the expansions) of the function
ψ at the point P0 in terms of the velocity components Vn and Vτ. Next, as a result of variation of the transformed
expansions, we find the difference equation to compute the vortex function ω0 at the point P0 in terms of the values
ψj, j = 0, 1, ..., J. The order of the error of determining the value of ω0 is a unity lower than the order of the higher
derivatives retained in the expansions of the quantities ψj. Let it be necessary to define the function ω0 with an error
of first order O(nj + τj). Then the truncated Taylor series for the stream function ψj can be represented as follows:
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This expression contains two unknown quantities: ω0 and ∂2ψ ⁄ ∂n∂τ. In this connection, we should set J = 2. We mul-
tiply the expressions of the form (25) written for the points P1 and P2 by the multipliers α1 and α2, respectively, to
be determined and then add them together. The values of α1 and α2 are found from the condition that for unknown
ω0 and ∂2ψ ⁄ ∂n∂τ the multipliers must be equal to 1 and 0, respectively, in the expression obtained upon the addition.
As a result we obtain
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ω0 = 2 
α1 (ψ1 − ψ0) + α2 (ψ2 − ψ0) − A

α1n1
2
 + α2n2

2
 , (27)

A = Vτ (α1n1 + α2n2) − Vn (α1τ1 + α2τ2) + 
1

2
 
∂Vn

∂τ
 [α1 (n1

2
 − τ1

2) + α2 (n2
2
 − τ2

2)] . (28)

The numerical experiments demonstrate the reliability and efficiency of the above method of finding the vor-
tex function at curvilinear boundaries. For a fixed impermeable wall, Vn = Vτ = ∂Vn

 ⁄ ∂τ = A = 0. If τ1 = 0, i.e., the
point P1 lies on the normal to the wall, then α1 = 2 ⁄ n1

2, α2 = 0, and ω0 = 2(ψ1 − ψ0) ⁄ n1
2. The last difference expres-

sion for the boundary value of the vortex function was obtained in 1928 by Thom and it has been widely used up to
the present for problems of incompressible fluid flow in simply shaped regions on orthogonal grids [7].

The temperature and the volume concentration at the boundary nodal points with the conditions of heat and
mass exchange of the first kind are considered to be specified. With boundary conditions of the second and third kinds
the derivative ∂W ⁄ ∂n involved in these conditions is replaced by the sum

∂W

∂n
 = 
∂W
∂x

 cos (x, n) + 
∂W

∂y
 sin (x, n) . (29)

The derivatives ∂W ⁄ ∂x and ∂W ⁄ ∂y are approximated by difference expressions analogous to (8) and (10).
A software system to model the heat exchange and hydrodynamics of an incompressible fluid in two-dimen-

sional regions of an arbitrary shape has been created on the basis of the numerical method developed. The geometry
of the region can be specified analytically or by the table of coordinates of a certain number of boundary points on
whose basis one determined the coordinates of the boundary nodal points and the direction cosines of the external nor-
mals at these points by interpolation according to a special subprogram. Prior to computing the sought grid functions
according to special subprograms, one also constructs coordinate sets for all the internal nodal points of the region, the
weight parameters of the difference schemes, and the ordinal numbers i′′  and i′ of the grid points employed for finding
the derivatives δyWi,m+0.5 and δyWi,m−0.5.

A substantial advantage of the calculation method that is based on the difference equations (8)–(28) is that a
change in the configuration of the region leads just to re-specifying the coordinate sets for its boundary points. Some
two-dimensional problems of natural convection have been solved on the basis of the constructed software system in
singly connected and doubly connected formulations.

The results of calculating the fields of temperature and stream function for the stationary gravitational convec-
tion of air in a region of a rectangular cross section when the relative temperatures of the left-hand and right-hand re-
gion walls are equal to, respectively, 0 and 1 and the upper and lower walls are heat-insulated (for Grashof numbers
of 1.25⋅104 and 105) virtually do not differ from the data given in [8] in graphical form and obtained by the differ-
ence method. The problem of flow and heat exchange has been solved for a doubly connected region in the case
where its external and internal boundaries are cylindrical surfaces whose directrices are a rectangle and a circle respec-
tively. Such problems frequently arise in evaluating the heat loss in transportation of a hot liquid or a vapor in heat-
supply systems.

In practical calculations of the thermal interaction between bodies separated by a liquid or gas layer, it is usu-
ally required that the heat flux from one body to the other be determined. In this connection, in generalizing experi-
mental data, the complex process of stationary heat transfer through a liquid layer is replaced by the equivalent
process of heat conduction [9]. The heat flux q0 from one body to the other on condition that the liquid velocity in
the layer separating them is equal to zero is determined analytically, numerically, or experimentally and it can usually
be represented in the form q0 = λ(Tb1 − Tb2) f, where f is the function of the geometric parameters of the system and
Tb1 and Tb2 are the temperatures at the boundaries of the first and second bodies. For the case of the heat exchange
between coaxial cylindrical surfaces with directrices in the form of a square with a side a and of a circle of radius R
[10], we have the function f = 2π ⁄ 1n [1.08a ⁄ (2R)]. The equivalent coefficient of thermal conductivity λeq is deter-
mined from the condition q = λeq(Tb1 − Tb2) f in terms of the heat flux q (found experimentally or numerically) in the
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presence of convection. The ratio εconv = λeq
 ⁄ λ characterizes the influence of convection on the transfer of heat

through the liquid layer and is a function of the Rayleigh number Ra = Gr Pr.
As the numerical experiments have shown, for a certain Rayleigh number Ra = Ra∗  corresponding to the tran-

sient regime of flow, the flow becomes nonstationary after the transient phases of the initial period. Unless the proce-
dure of smoothing of a numerical solution is used, further increase in Ra leads to the violation of its stability. This is
due to the extension of the range of variation of the function sought and involves the increase in the rate of change
of these functions with time.

In all actual processes of flow and heat and mass exchange, the parameters of the flow (velocity, temperature,
concentration of the components, and others) remain constrained as do their time derivatives. In mathematical model-
ing, to ensure this condition for the true values of the coefficients of kinematic viscosity ν, thermal conductivity λ,
and diffusion D, one substitutes their effective values νef = ν + νt, λef = λ + λt, and Def = D + Dt into the equations
of flow and heat and mass exchange; in this case νt ≥ 0, λt ≥ 0, and Dt ≥ 0. According to Eqs. (1)–(3), such a substi-
tution leads to a decrease in all the absolute values (moduli) of the rate of change of the functions ω, T, and C in all
the internal points of the region.

To ensure the stability of numerical solution of the problems of flow and heat and mass exchange for large
Ra and Re numbers (Ra > Ra∗ ) we propose a means of imposing constraints on the rates of change of the functions
sought (ω, T, C) with time at certain nodal points of the region at which these rates exceed values allowable under
stability conditions. The constraint of the form

∂W
∂t

 = AW 
∂W

∂t
 ⁄ 

∂W

∂t




   for   





∂W

∂t




 > AW , (30)

where AW > 0 and W = ω, T, and C, enables us to ensure the stability of the solution for any values of the Ra num-
ber. The numerical experiments have shown that for AT = Tmax − Tmin, where Tmax and Tmin are the maximum and
minimum values of the temperature at the boundaries of the region, the constrained growth in the grid function Tim

n  is
ensured for any values of the Ra number; upon the transient phases of the initial period it becomes unnecessary to
impose constraint (30) on the function T for the above problems, i.e., a constraint of the form (30) imposed on T has
no effect on the final result of the solution. This also holds for the function C. The quantity Aω must also increase as
the number Ra increases. A rather high reliability of the solution was ensured by selecting the quantity Aω for the
time layer n + 1 according to the expression Aω = Aω0ω

~n, where ω~n is the average value of the modulus of the grid
function ωim

n  on the time layer tn.
The degree of influence of constraint (30) on solution results is characterized by the quantity ξ defined as the

ratio of the number of nodal points at which constraint on the rate of growth of the vortex function is imposed to the
total number of difference-grid nodes, i.e., (I + 1)(M + 1). For a given Ra number the dependence of the quantity ξ at
the moment of establishment of solution on the parameter Aω represents a concave curve; its curvature is relatively
small at the point of minimum of ξ. This circumstance enables us to select a constant Aω in a rather wide range of
Rayleigh numbers. If the steps of the difference grid are not too coarse, it is unnecessary to constrain the rate of
growth of the functions ω, T, and C for Ra ≤ 107. Table 1 gives results of calculating the quantity ξ at the moment
of stabilization of the solution for the case of a coaxial arrangement of cylindrical surfaces with directrices in the form
of a square and a circle for R ⁄ a = 0.25 and Aω0 = 2. It is clear from the table that when the Rayleigh numbers are

TABLE 1. Fraction of Nodal Points at Which the Rate of Growth of the Vortex Function is Constrained as a Function of the
Number of Nodal Points and the Rayleigh Number

Number of points (I + 1)(M + 1) Ra = 107 Ra = 108 Ra = 109 Ra = 1010

50 × 51 0.0061 0.0717 0.7855 0.8729

100 × 101 0 0.0055 0.4077 0.5866

150 × 151 0 0.0019 0.0352 0.1563

200 × 201 0 0.00079 0.0225 0.0472
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high the quantity ξ decreases monotonically at the moment of establishment of the solution as the total number of
nodal points increases and increases with increase in the Ra number.

Figure 1 gives results of calculating the fields of the stream function and the temperature at the moment of
establishment of the gravitational convection of a fluid between two coaxial cylindrical surfaces with directrices in the
form of a square with a side a and a circle of radius a ⁄ 4 and relative temperatures of 0 to 1 respectively for the
Grashof number Gr = 105. As is seen in the figure, four vortices are formed in the flow region for this Grashof num-
ber; two vortices in the right-hand part of the region rotate clockwise and the other two vortices in the left-hand part
rotate counterclockwise.

Figure 2 shows the dependence of the relative value of the equivalent coefficient of thermal conductivity
εconv on the Rayleigh number in convective heat exchange in a closed region of a rectangular cross section
(0 < x < X and 0 < y < Y) and a region confined by cylindrical surfaces with closed directrices in the form of a rectan-
gle (X × Y) and a circle of radius R = X ⁄ 4. The calculation results are in agreement with the dependence (shown in
the same figure) that generalizes experimental data [9] for vertical and horizontal plane slots and annular and spherical
layers filled with gas or dropping liquid.

The results of the numerical experiments demonstrate the efficiency of the method proposed and the possibili-
ties of constructing an integrated software system to model the heat exchange and hydrodynamics of an incompressible
fluid in arbitrarily shaped multiply connected systems.

NOTATION

a, size of the side of the square; C, volume concentration of the components; D, diffusion coefficient; Dt, tur-
bulent component of the diffusion coefficient; f, function of the geometric parameters of the system; gx and gy, pro-
jections of the vector of acceleration with a modulus g produced by the external mass force onto the x and y axes; Gr

Fig. 1. Isolines of the stream function and isotherms of thermal gravitational
convection of the fluid between two coaxial cylindrical surfaces with directrices
in the form of a square and a circle.

Fig. 2. Dependences of the relative value of the equivalent coefficient of ther-
mal conductivity εconv on the Rayleigh number constructed from the results of
calculation of the free convection of the fluid in the region of a rectangular
cross section (curve 1, Y ⁄ X = 2) and the region confined by cylindrical sur-
faces with closed directrices in the form of a square (Y ⁄ X = 1) and a circle of
radius R = X ⁄ 4 with the relative coordinates of the central point x

_
cent =

xcent
 ⁄ X, y

_
cent = ycent

 ⁄ Y [curve 2) x
_

cent = 0.5, y
_

cent = 0.5; curve 3) 0.4, 0.5; and
curve 4) 0.5, 0.4] and from the experimental data (curve 5).
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= gβL0
3∆T ⁄ ν, Grashof number; hx, hy, and ht, steps of the difference grid along the x, y, and t axes; L0, determining

value of the dimension of the region; n, normal to the boundary surface; Pr = ν ⁄ a, Prandtl number; q, heat flux; q0,
heat flux from one body to another in the absence of convection; R, radius of the circle; PrD, diffusion Prandtl number;
Ra = Gr Pr, Rayleigh number; Re = V0L0

 ⁄ ν, Reynolds number; Sc = ν ⁄ D, Schmidt number; t, time; T, temperature;
u and v, projections of the velocity vector onto the x and y axes; V0, determining value of the velocity (for the case
of free motion it is equal to 1); Vn and Vτ, projections of the velocity vector onto the normal n and the tangent τ to
the boundary surface; W, sought function of the equations of hydrodynamics and heat and mass transfer; x, y, Cartesian
coordinates; δxW, δyW, and δtW, difference derivatives of first order with respect to the coordinates x, y, and t; δxxW
and δyyW, difference derivatives of second order with respect to the coordinates x, y; β = −(∂ρ ⁄ ∂T) ⁄ ρ, temperature co-
efficient of volumetric expansion; βC = −(∂ρ ⁄ ∂C) ⁄ ρ, diffusion coefficient of volumetric expansion; εconv = λeq

 ⁄ λ, rela-
tive value of the equivalent coefficient of thermal conductivity; θ, weight parameter of the difference equation; λ,
thermal-conductivity coefficient; λt, turbulent component of the thermal-conductivity coefficient; λeq, equivalent thermal-
conductivity coefficient; ν, coefficient of kinematic viscosity; νt, turbulent component of kinematic viscosity; ξ, fraction
of nodal points at which constraint on the rate of growth of the vortex function is imposed; ρ, density of the medium;
τ, tangent to the boundary surface; ψ, stream function; ω, vortex function. Subscripts: b, boundary of the region; conv,
convection; eq, equivalent; ef, effective; t, turbulent; max and min, maximum and minimum values; cent, central; i, m,
and n, ordinal numbers of difference-grid steps for the x, y, and t axes; k, ordinal number of iteration; 0, boundary
values.
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